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Estimation of Latent Ability Distributions Under Essential Unidimensionality

In many largescale educational assessments (such as National Assessment of

Educational Progress) it is of interest to compare the distribution of latent abilities of

different subpopulations, and track these distributions over time to monitor educational

progress. Several researchers have attempted to develop methodologies to recover ability

distribution from item response data. For example, Samejima and Livingston (1979) have

fit polynomials to latent densities using the method of moments. Samejima (1984) also fits

0 densities using MLE 0 by matching two or more moments. Levine (1984) projects the

latent distribution onto a convenient function space and estimates projections by maximum

likelihood methods. Mislevy (1984) adopts marginal maximum likelihood method to

recover the distribution of the latent variable from the observed item response patterns.

All the above mentioned methods rely upon the assumption of local independence

for their validity, and are computationally intensive. Junker (1988, 1992) in association

with Paul Holland (ETS) and William Stout (Illinois), developed a simple scheme, based

on the proportion correct score, for smoothly approximating the ability distribution from

binary responses. His approach is also robust to some violations of local independence.

Namely, the methodology works for essentially unidimensional models under essential

independence.

Junker's Approach for Estimating the Latent Trait Distribution

Let J denote the number of binary items, X (Xi,X2,...,Xj), denote item response

vector, and P1(0), P2(0),...,PJ(0) denote the corresponding item characteristic curves

ICC's with respect to 0, where 0 denotes the latent trait of interest. Then, Xj= EXi is
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1the average item score, and 75 (0) = 7 E/33(0) is the average ICC

Under the usual assumptions of local independence (Li) and monotonicity (M), or

more generally under Stout's (1987, 1990) formulation of essential independence (EI) and

locally asymptotic discrimination (LAD), it can be shown that (Junker, 1988)

6J-)1.1) = P.71(7.7)

is a plausible point estimator of 0. That is, Oi(Xj) is a consistent estimator of 0 under

either set of assumptions. The distribution of 0.7(Xj) is then given by

F JO = P[0 j(Xj)< t] (1)

A natural estimator of the 0 distribution given in equation (1) is the "empirical"

distribution of Oj's obtained by administering the test Xj to N examinees resulting in N

response vectors X1J, X2j,...,X wand the corresponding 0 estimates 0 jai j),

9 pf2j),...,Oj(XNj). The empirical distribution of Oj's is given by
N

1F-N,j(t) E.- 37 ilfo-jxnpt} (2)

= {fraction of Oj(Xnj)'s<t}

where the "indicator function" ls takes the value 1 if S is true and 0 if S is false.

It has been shown that, if the distribution function F(t) is continuous, the empirical

distribution function FNj(t) converges in probability to F at each t as both J-+w and N-'w

(Junker, 1988, 1992).
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Practical Limitations

In applications, if P has a lower asymptote, and if j<c, then P -1 (Xj) is set to -03.

Although the probability of this happening decreases to zero as J tends to infinity, it still

does happen with some frequency when J is small. Therefore, we must be concerned with

recovering the O distribution whenever X J's fall below the lower asymptote c (and

similarly for an asymptote d < 1). Two adjustments were made to overcome this problem.

(i) Replace the point estimator 0J with

6,c1)(x J'XJ+1
J)

L 3 +2

(1)(e also converges to O and is bounded if the asymptotes of Pj are 0 and 1)

This first adjustment takes care of pbar's when the lower asymptote is 0 and the

upper asymptote is 1. As a result of this adjustment the variance of the estimated theta

distribution shrinks slightly, but this shrinkage reduces as the test length increases.

(ii) The numerical inverter of the function 15j is written (on the computer) such that it

finds the root of a linear extrapolation of Trj(t)=Xj when lies outside the asymptotes of

J'
The second adjustment takes care of adjustments that the fist adjustment can not

handle. For example, if the guessing parameter c>0, for cases where X < c, the numerical

(inverter approximates and assigns a finite value for ej 1)
. This adjustment also occurs less

frequently as the test length grows.
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Kernel Smoothing

The basic estimator presented in equation (1) can also be written as

J
i"

iv,, iz__.
j(t) = E

0
1" AAX j=i011{17

J 2
1( 1 J)<t- }

J .. _ rt_p-j luo) ]
_, E P N{X j=i01 K [ h

f-=0
(3)

where PA[.] is the estimator of the discrete distribution of X based on N observations.

K(u) is constant except for a jump from 0 to 1 at u=0, and h is any fixed positive number.

In cases where the distribution is a truly continuous one, the performance of FN j in

equation (2) can be improved by replacing the discrete function K(u) with a continuous

distribution function K(u) which increases from 0 to 1 as u ranges from a) to w. Let

N rtTy -1 (jI
F-. (t) 1 S K

1. hNJh 7C1
(4)

denote the smoothed estimator obtained by replacing K with K. In equation (4) h (window

width) is a parameter of the smoothing function. If h is large the smoothing function

increases slowly, and if h is near zero, the smoothing function is steeper.

A practical question is: given N and J, what is a reasonable choice for h so as to get

best possible estimator of 0? The formula for h (Silverman, 1986 pp.45-48; Reiss, 1981) is

given by
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h = C J-1/5 (var 0)1/2 (5)

where Cis an unknown constant that may be determined experimentally.

The smoothing kernel K(t) is given by

0, t < 1

K(t) = 1/4(3tt3+2), I ti < 1

*1, t> 1

Other smoothing kernels could be chosen besides K(t) shown here. The advantages

of K(t) are: (a) it is easy and fast to compute, (b) it is conservative about the tails of the

estimated distribution.

In Junker's (1988, 1992) study, C=1/3 was chosen and var(0) was approximated by

the interquartile range of a uniform distribution. Junker investigated the performance of

both the discrete empirical distribution function (EDF) in equation (3), and the kernel

(smoothed) distribution estimate (KDE) in equation (4) in a Monte Carlo experiment. The

following parameters were varied: test length (10, 30, 60, 100), ability distributions

(normal, bimodal, discontinuous), ICC for generation (Rasch, 3PL), ICC for recovery

(Rasch, 3PL, and 3PL with noise introduced). Sample sizes of 5000 examinees were

simulated in all cases.

Junker's results showed that both KDE and EDF were able to recover the 0

distribution very well in all cases, with KDE performing better than EDF, especially for

short tests. As the test length increased, the distance measures, RMS, decreased, and the

smoothness of the distribution and the density plots improved.
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The goals of the present study were to refine the smoothing parameter h and

replicate the results obtained by Junker (1992); to investigate the performance of EDF and

KDE in estimating the ability distribution under essential unidimensionality as opposed to

strict unidimensionality; and to illustrate the methodology on a real data set.

Refinement of the Smoothing Parameter h

The aim was to find the best method for estimating the variance calculation of 0,

and best value for C in equation (5). Three methods of estimating variance were

considered:

1. The interquartile range of the uniform distribution (same as before) (V1)

2. the interquartile range stimated from the frequency distribution of the
observed data (V2)

3. the direct estimation of the variance from the frequency distribution of the
observed data (V3).

Four different values for C were considered: C. 1, 1/2, 1/3, 1/4.

In order to achieve the best combination of C and variance estimation a 3x4 design

was used.

Table A
Different combinations of C and variance for computing h

C1=1 C2=112 C3=1/3 01 =1/4

V1 Cl V1* C2 V1* C3V1* C.4 V1

V2 C1 V2* C2 V2* C3 V3 C.4 V4

V3 CI V.5* C2V3 C3 V3 C.4 V4
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For each cell of Table A we studied the performance of the smoothed estimator

KDE and the unsmoothed estimator EDF by varying the following parameters. Two ability

distributions to generate 0's: Normal, bimodal; two types of ICC generation: 1PL, 3PL; two

types of ICC's to recover the 0distribution: 1PL, noisy 3PL (item parameters were

deliberately contaminated with noise), two test lengths: 20, 60, and one examinee sample

size: 1000. For each of the combinations of these parameters the performance of KDE and

EDF was studied for those combinations of C and V marked with * in table A (the other

cells did not produce promising results in initial simulations and therefore they were not

studied further). These results are shown in Tables 1 to 4 and are based on 100

replications. In Tables 1 to 4, RMS EDF denotes the root mean square distance measure

between the estimated and the true distributions for EDF estimator over 500 points

averaged over replications. Similarly RMS KDE denotes the root mean square distance for

the smoothed estimator. STD 0 denotes the estimated standard deviation of the O's

averaged over replications.

Tables 1 and 2 show the results for the normal distribution and Tables 3 and 4 show

the results for the bimodal distribution. In each of the tables, the column under RMS EDF

across conditions is purely random and is not affected by the C and V combination.

However, it shows how these values bounce around over replications. The column under

RMS KDE shows the real differences in RMS's for different conditions. For example, in

Table 1 RMS EDF for C1V3 is much smaller than for C3V1 with 20 items.

Figures 1-4 show the distribution and density plots for a sample of runs in Tables

1-4. Each of the figures contains two panels. The first panel to left is the PP plot, where

the Xaxis denotes the true distribution and the Yaxis denotes the estimated

distribution. The step function denotes the EDF estimator and the smooth curve denotes

the KDE estimator. The closer each of the estimators to the solid diagonal line, the better
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the estimator. The right panel compares the density derived from the KDE estimator with

the true density.

The decision to choose appropriate values for V and C were based on the distance

measures in Tables 1-4 and plots of the estimated distribution function in Figures 1-4.

Based on these results C1V3 combination was chosen. That is, the direct variance

estimation method with the constant C=1 produced the best smoothing parameter h.

With the new values for C and V we then repeated the study done by Junker (1992)

to see if we get similar results. These results are shown in Tables 5 and 6. Table 5 shows

results for the normal distribution across three types of icc generation and recovery, and

the Table 6 shows the same for the bimodal distribution. A sample of pp plots and

density plots are shown in Figures 5 and 6.

In Table 5 comparison of results across three types of ICC's shows that the distance

measures slightly increase as the model gets more complex. That is, with guessing and

noise present the error slightly increases. We also studied the location on the 0scale where

the maximum discrepancy occurs between the true and the estimated distributions. Across

the models this location shifts to the left. In other words, as the guessing and noise are

introduced, there is more instability in estimation at lower ability levels, as can be

expected. The same findings were observed for bimodal distribution in Table 6. These

results indicate that RMS and pp plots are similar to or slightly better than those

obtained by Junker (1992).

Essentially Unidimensional Study

The main goal of this stud-, was to see if the results observed so far for the data

generated with strictly unidimensional models would hold up for data generated with
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essentially unidimensional models, where there is one dominant dimension influencing

responses to all items, and several minor dimensions influencing responses to a few items.

The data generated here resembled a paragraph comprehension test where the dominant

ability influenced all items and items of each paragraph were influenced by an additional

ability unique to the paragraph. In all there were l+r abilities, where r denotes the number

of paragraphs. Each item is therefore influenced by two abilities, the dominant ability 0

and one of the minor abilities, 01 through Or. The abilities were generated from a bivanate

normal distribution with zero correlation between the abilities. The item parameters were

generated as follows.

a
1

N((1e)A,

a
2 .la)

b N." (0,1), i=1,2

where e denotes the strength of the minor ability in relation to the major ability.

The twodimensional 3PL model was used to generate item responses, given by

1c.
P1(01,02) =

1 + exp{-1.7ai(0 b)}

where a is the discrimination vector, 0 is the ability vector, and b is the difficulty vector of

item i. Three test lengths were used (20, 40, 60), and two e values (0.2 and 0.4) were used

in simulations. For each test length, 2items per paragraph and 5 items per paragraph were

considered.

Two ways of estimating (recovering) ICCs were considered. First, the two sets of
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item parameters used for generating the item responses were manipulated as follows in

order to obtain one parameter ICCs:

a(i) al(i)
V11-a2(1)* a2(1)

b(i) = bl(i) (a2(i)/a1(i)) b2(i),

which were then used to obtain the EDF and the KDE estimators. This definition of a(i)

and b(i) is exactly what we would get if we averaged over the nuisance (paragraph) traits

in the twodimensional compensatory normal ogive model. This is a good approximation to

the result of averaging over the nuisance traits in the logistic model we are using.

The results of this study are reported in Table 7 and the plots are shown in

Figures 7-10. The RMS are within the expected range and the plots resemble those in

strict dimensionality case. Hence one can conclude based on these simulations that the

KDE estimator is an acceptable methodology to estimate the underlying distributions

provided the ICCs can be well estimated.

Secondly, in order to investigate a more practical approach for estimating the ICCs,

item parameters were obtained by using the computer program BILOG. These ICCs were

then used to obtain the EDF and the KDE estimators. The results of this study are shown

in Figures 11-16.

Figures 11-13 display distribution and density plots for the case where e=0.2 and

Figures 14-16 display the plots for the case where e=0.4. That is, the influence of the

minor ability in relation to the major ability is more in the later case. As can be seen from

the figures, the distribution and densities are recovered smoothly in both cases. As the test

length increases, the curves look smoother.
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Real Data Study

In order to investigate the performance of KDE estimator on areal data set, ACT

reading test was used. The reading test consists of 40 items and 4 paragraphs, where each

paragraph is followed by 10 items. There were 5000 examinees is this data set. As a first

step, DIMTEST (Stout, 1987; Nandakumar & Stout, 1993) was used to investigate if the

reading test was essentially unidimensional. We fowid that the last 10 items were causing

multidimensionality. Upon further investigation we found that the first 30 items tapped

literature content area while the last 10 items tapped psychology content area. Moreover,

since these were the last 10 items, speededness could have also caused the

multidimensionality. When these items were removed, the rest of the items were found to

be essentially unidimensional by DIMTEST (Nandakumar, in press). The item parameters

of this data set were estimated using BILOG, and the ability distributions were estimated

and compared using KDE estimators for three subpopulations: students who attained the

grade A in high school (N=1574), students who attained the grade B (N=2144), and

students who attained the grade C (N=915).

The comparison of distributions and densities for the three subpopulations are

shown in Figure 17. From these plots it can be seen that the KDE estimator is smoothly

estimating the distributions while the densities could be further improved. Notice that the

estimated distribution for the A students is higher than those for the B and C students,

and the estimated distribution for the B students is higher than that for the C students.

This corresponds to our expectations, which helps to confirm the idea that the latent

distribution estimator is performing well.

12
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Summary and Discussion

In summary, the smoothing parameter h was refined to obtain optimal values for

the constant C and for the variance estimation in equation (5) so that the KDE estimation

of distributions are smooth. Secondly, performance of estimators EDF and KDE were

investigated for the data generated under essentially unidimensional models. Two methods

of estimating ICCs were considered for this purpose: (a) the twodimensional item

parameters used for generating the data were manipulated to resemble onedimensional

item parameters, (b) the ICCs were estimated by BILOG. In both cases RMSs, and the

distribution and density plots indicated that these estimators are acceptable methods to

estimate underlying ability distributions. Thirdly, the performance of the KDE estimator

was illustrated on the ACT reading test to compare the distributions of three

subpopulations. These results further confirmed that the KDE estimator is performing well

to estimate latent distributions.

The KDE and EDF estimators investigated in this paper are simple, fast, and easy

to compute methods to recover latent distributions. These estimators work for a general

class of ICCs and are robust under violations of local independence and strict

unidimensionality assumptions. The results of this paper illustrate promise of these

methods for the future.
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Table 1: Study: Smoothing Parameter, N = 1000
0-Distribution : Normal
ICC Generation : 1PL
ICC recovery : 1PL

Combination
of

20 Items 60 Items

C and V RMS RMS STD RMS RMS STD
, EDF KDE 0 EDF KDE 9

C1V1 .0205 .0105 1.54 .0118 .0095 1.61

Cl V2 .0217 .0045 .90 .0259 .0245 .94

CI V3 .0219 .0071 .98 .0192 .0184 .99

C2V1 .0218 .0075 1.55 .0131 .0118 1.61
C2V2 .0215 .0116 .91 .0194 .0174 1.00
C3V1 .0282 .0207 1.55 .0161 .0153 1.61

Table 2: Study: Smoothing Parameter, N = 1000
0-Distribution : Normal
ICC Generation : 3PL
ICC recovery : Noisy 3PL

Combination
of

20 Items 60 Items

C and V RMS RMS STD RMS RMS STD
EDF KDE 0 EDF KDE 9

CIV1 .0339 .0329 1.70 .0155 .0158 1.80

C1V2 .0407 .0374 1.26 .0197 .0170 1.05

C1V3 .0362 .0318 1.40 .0122 .0077 1.02

C2V1 .0466 .0382 1.70 .0205 .0180 1.80

C2V2 .0430 .0375 1.26 .0136 .0100 .90

C3 V 1 .0385 .0325 1.70 .0128 .0091 1.80

Table 3: Study: Smoothing Parameter, N = 1000
8-Distribution : Normal 13,-elc eL7t,

ICC Generation : 1PL
ICC recovery : 1PL

Combination
of

20 Items 60 Items

RMS RMS STD RMS RMS STDC and V
EDF KDE 9 EDF KDE 9

C1V1 .0274 .0245 1.55 .0239 .0232 1.61

C1V2 .0274 .0239 1.89 .0152 .0158 2.11

C1V3 .0286 .0263 1.54 .0134 .0130 1.68

C2V1 .0231 .0189 1.55 .0172 .0162 1.61

C2V2 .0221 .0183 2.07 .0111 .0100 2.18

C3V1 .0277 .0251 1.55 .0096 .0088 1.61

Table 4: Study: Smoothing Parameter, N = 1000
0-Distribution : koiormoul m
ICC Generation : 3PL
ICC recovery : Noisy 3PL

Combination
of

20 Items 60 Items

RMS RMS STD RMS RMS STDC and V
EDF KDE 0 EDF 'KDE 9

C1V1 .0285 .0245 1.70 .0265 .0257 1.80

C1V2 .0383 .0365 2.17 .0141 .0134 2.10

Cl V3 .0308 .0266 2.28 .0164 .0152 1.62

C2V1 .0324 .0295 1.70 .0180 .0169 1.80

C2 V2 .0302 .0241 2.17 .0111 .0088 2.14

C3 V 1 .0264 .0215 1.70 .0150 .0139 1.80
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Table 5: Replicatin Study with C = 1, V = 3, &, N = 1000.
- distribution Normal.

ICC Generation - ICC recovery

Number
of

Items

1 FL - 1 PL 3 PL - 3PL 1 3PL - 3 PL Nosiy

STD
e

RMS
EDF

RMS
KDF

STD
9

RMS
EDF

RMS
KDF

STD
9

RMS
EDF

EMS
KDF

20 :0229 .0107 .96 .0304 .0212 1.06 .0382 .0336 1.35

40 .0164 .0115 .97 .0197 .0157 1.04 .0334 .0319 1.08

60 .0147 .0119 .98 .0160 .0134 1.03 .0163 .0135 1.02

Table 6: Replicatin Study with C =1, V = 3, Sc, N = 1000.
0 - distribution - Bimodal.

ICC Generation - ICC recovery

Number
of

1 PL - 1 PL 3 PL - 3PL 3 PL - 3 PL Nosiy

RIM RMS STD RMS RMS STD RMS RMS STDItems
EDF KDF 9 EDF KDF 9 EDF KDF

20 .0284 .0253 1.60 .0325 .0279 1.60 .0320 .0282 2.26

40 .0188 .0174 1.66 .0209 .0192 1.70 .0252 .0242 1.74

60 .0175 .0165 1.70 .0183 .0173 1.73 .0192 .0182 1.70

Table 7 : Essential Unidimensionality
Paragraph Comprehension

ICC Generation : Normal, tvo-dim .3 PL
ICC recovery : Normal. one-dizt 3 FL

t = 0.2, dE = 1
2 items/paragraph

4. = 0.2, dE = 1
5 items/paragrah

RMS RMS STD RMS RMS STD
EDF KDE 9 EDF KDE 0

20 .0455 .0379 1.03 .0276 . AO 1.00

40 .0292 .0245 1.06 .0256 .0238 1.12

60 .0150 .0109 1.01 .0131 .0094 1.02



I

3

ti.
t I

01
tI

10
 It

C
3/

1i
.1

 D
A

T

S
m
o
o
t
h
i
n
g
 
P
a
r
a
m
e
t
e
r
 
S
t
u
d
y
 
d
L
 
=
 
I

M
M

4M
A

T

S
ts

 S
on

 s
no

w
.

IS

N
er

o 
I

tr
I1

 X
 It

44
31

0.
ct

11
a

44
10

In
01

4
4

44

3

I
. 3 3

I

44
14

40
11

2.
de

ls

I
I

I

0 2

I1
' 3 3 3 3

Itm
t. 

I
0I

01
10

1t
N

11
20

.D
A

T
N

11
20

.0
A

T

Iw
o 

14
.1

4 
04

44
.4

4

11
44

1D
A

T

2 3

-I
I

1

it
14

4+
4 

C
 C

I3
 4

4 
It

01
14

01
)A

T

4
11

1
U

IA
Ia

4

74
41

4.
40

44
44

4
n
r

R
e
p
l
i
c
a
t
i
o
n
 
S
t
u
d
y
 
d
1

=
 
1

44
3E

60
 D

A
T

/1
44

c4
 I 

C
M

 4
0 

I t
N

3E
60

 D
A

r

-
:

00
S

I
44

C
A

I

14
 0

14
44

1.

83
34

0.
D

A
T

41
.0

4

F
14

.4
C

M
 4

0 
It

04
01

04
II

O
S

II

no
s

13
3:

14
0.

D
A

T

I
3

19



E
s
s
e
n
t
i
a
l
 
U
n
i
d
i
m
e
n
s
i
o
n
a
l
i
t
y
 
S
t
u
d
y

d
E

1

rii
.

I
2.

..O
 n

* 
C

a*
.

II 
it

1t
/p

a
0.

1

P
C

20
-2

.D
A

T
P

C
20

-2
.D

A
T

3 d

700
02

01
01

O
S

10

O
N

11
 T

ho
u 

13
10

11
4u

S
al

.2
1

0 T
al

e

11
6.

 I
,,,

,,,
 0

 C
.9

.
$0

 It
f 1

0/
02

- 
0.

1

pc
50

-5
.d

at
pc

..5
0-

5.
da

t

2

00
02

01
0

01
t0

in
a 

T
N

* 
01

01
10

41
n

.2
.1

20

0
1

T
A

M
S

2

P
C
4
0
-
5
.
D
A
T

40
 It

1 
It/

pa
r.

0.
1

P
C

40
-5

.D
A

T

00
02

04
D

I
01

II
T

ru
ll 

th
a1

a 
04

12
Itv

io
n

rt
.

14
1

1

P
C
6
0
-
5
.
D
A
T

00
02

04
00

00
10

lo
so

 1
11

01
01

si
nt

ah
m

2
1

0
f

T
he

ta

10
 It

I I
t/p

er
. l

 4
.1 P
C

60
-5

.D
A

T

2 t
l

2
7

.1
0

1
2

3

11
11

.



E
s
s
e
n
t
i
a
l
 
U
n
i
d
i
m
e
n
s
i
o
n
a
l
i
t
y
 
S
t
u
d
y

=
 
0
.
2
:

P
a
r
a
g
r
a
p
h
 
C
o
m
p
r
e
h
e
n
s
i
o
n
 
T
y
p
e

I
C
C
S
 
E
s
t
i
m
a
t
e
d
 
b
y
 
B
I
L
O
C

F
i
g
u
r
e
 
1
1

1
4
1
0
1
a
l
:

np
02

02
.d

ot

13

o
0

.4
4

A
O

os
O

A
0/

1

11
v0

 1
50

1A
 1

26
0i

tu
ito

n
p
o
M
M
A
U

0.
5

1.
0

N
dm

id
at

F
i
g
u
r
e
 
1
2

A
l
i
'

1

O
A

O
A

O
A

01

T
A

41
15

A
51

10
11

uf
m

r
t
p
c
0
O
a
d
a
t

01

m
cg

ad
al

4

F
i
g
u
r
e
 
1
3

6
C

e
m
.
!

3 2

.1

l
i
r
a

t
p
c
0
0
2
,
d
a
t

.

0
C

o
O

A
IA

0.
5

Ir
is

 S
A

N
 0

4s
6 

ilv
ka

O
A

22

1.
0

th
w



2 a 3

E
s
s
o
n
t
i
o
l

U
n
I
d
i
m
e
n
s
i
o
n
n
1
1
t
y

S
t
u
d
y

=
0
.
4
:

P
a
r
n
g
r
n
p
h

C
o
m
p
r
e
h
e
n
s
i
o
n

T
y
n
e

I
C
C
S

E
s
t
i
m
n
t
p
d

b
y

1
3
1
1
,
0
0

F
i
t
;
u
r
e

1
4

o
p
a
N
U
M

G
O

0.4
04

T
A

I
T

hou
PA

orl

n
p
>
1
0
4
4
M

f
A

E
p
O
M
A
M

1

F
i
g
u
r
e

1
5

/
u

,
k
f
r
1
2
,

0
.
0

02
O

A
01

T
N

T
10,44

litu401

n
p
c
6
0
4
,
t
l
a
t

01
4.0

iM
Sa

r
p
c
o
l
l
A
d
M

F
i
g
u
r
e

1
6

t
c

3

O
A

O
A

O
A 12.11)44a124111W

th1

24
01

t
o

1g

3
.

.1
0

T
im



Zt.

cts
4:1

2

a)
a

C.

co.0

(-00

ci

c`lO

O

2

Inc NO. #671
AI I, a it

o NC, 9

N
O

CD

O
0

Figure 17: Reading Data Study
ICCS Estimated by BMOC
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